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The geometrically non-linear free vibration of thin composite laminated plates
is investigated using the hierarchical "nite-element (HFEM) and the
harmonic-balance methods (HBM). Von KaH rmaH n's non-linear strain}displacement
relationships are employed and the mid-plane in-plane displacements are included
in the model. The equations of motion are developed by applying the principle of
virtual work and are solved by a continuation method. The convergence properties
of the HFEM and of the HBM are analyzed. Internal resonances are discovered
and the consequent multi-modal and multi-frequency vibration of the plates is
shown. The variation of the plates' mode shape and the e!ect of the "bres'
orientation are investigated. ( 1999 Academic Press
1. INTRODUCTION

Due to their high sti!ness to weight ratio, laminated composite plates are used in
commercial and military aircraft [1], where they are often subjected to high levels
of acoustic pressure. Therefore, they may vibrate with large amplitude
displacements, i.e., with geometrical non-linearity.

The resonance frequencies of a plate change with the amplitude of vibration
displacement [2}7], possibly becoming commensurable with other resonance
frequencies and causing coupling of the natural modes. As a result, energy is
interchanged between those modes and the response is multi-modal. This
phenomenon is known as internal resonance [8}10].

Lau et al. [11] used the "nite-element method and the harmonic-balance method
to study the vibration of isotropic plates. The curves were traced by incrementing
selectively the fastest varying characteristic amplitude or the frequency. Loops due
to 1 : 3 internal resonances were found. Abe et al. [12] analyzed internal resonances
0022-460X/99/310127#26 $30.00/0 ( 1999 Academic Press
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in laminated plates subjected to harmonic excitations by applying the Galerkin
procedure and the perturbation method of multiple scales. The method is only valid
for displacements smaller than the thickness of the plate. The in-plane
displacements were neglected and the transverse de#ection was assumed to be
a function of two linear, thus constant, modes.

The study of the free vibrations of undamped non-linear systems, namely the
determination of the amplitude}frequency relations and modes of vibration, is
important because the dynamic properties of the system are estimated. It is known
that the non-linear mode shapes [13] of plates with "xed ends change with
amplitude [2}6]. This variation can be described by a "nite-element method
(FEM) model. The motion of plates vibrating freely with amplitude displacements
of the order of their thickness is generally periodic [14] and, consequently, can be
analyzed by the harmonic-balance method (HBM) [8, 15, 16]. Unlike perturbation
methods, the HBM is not restricted to weakly non-linear problems.

Generally, the solution of the non-linear equations of motion can only be
obtained approximately and iteratively, with a recalculation of the non-linear
sti!ness matrix in each iteration. Thus, the time needed to obtain the solutions
increases considerably with the number of degrees of freedom (d.o.f.). The internal
resonance phenomenon results in a signi"cant excitation of higher order
modes, which require a spatial model with more degrees of freedom for
accuracy. Moreover, to study multi-frequency vibrations by the HBM more
than one harmonic is needed in the time series, consequently increasing the total
number of d.o.f. and, in general, a problem involving a composite plate is not
symmetric, thus precluding a reduction of the number of d.o.f. using symmetries of
the system.

In the hierarchical "nite-element method (HFEM), better approximations are
accomplished by adding higher order shape functions to the existing model,
without rede"ning the mesh. Because convergence tends to be achieved with a small
number of d.o.f. [4}7], this method is very suitable for non-linear analyses.

In this paper, the HFEM and HBM are used to analyze the free vibration with
large displacements of thin, rectangular, composite laminated, fully clamped plates.
The convergence with the number of harmonics and with the number of shape
functions is discussed. Internal resonances are detected and the e!ect they have on
the dynamic behaviour of the laminated plates is described.

2. MATHEMATICAL MODEL

2.1. HIERARCHICAL FINITE-ELEMENT METHOD

For each element, the mid-plane displacements (Figure 1) are expressed in the
form
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Figure 1. (a) Rectangular plate: x, y and z*global co-ordinate system; u
0
, l

0
and w

0
2mid-plane

displacements; a, b and h*plate dimensions, (b) m, g*local co-ordinate system.
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where p
o
and p

i
are the number of out-of-plane and in-plane shape functions used in

the model, MgN and MfN are vectors of in- and out-of-plane shape functions, Mq
p
N and

Mq
w
N are the generalized in- and out-of-plane displacements and [N] is the matrix

of shape functions. The set of shape functions used is the Rodrigues' form of
Legendre polynomials [4, 7, 14].

For smooth solutions, p-extensions are more advantageous than strong mesh
generations [17]. Consequently, only one element is used to model the whole plate
(for irregular geometries more elements can be used), and the local and global
co-ordinates, Figure 1, are related by

m"2x/a, g"2y/b. (5)

Von KaH rmaH n's non-linear strain}displacement relationships are valid for thin
plates [18]. They can be expressed as
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Mep
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N and Meb

0
N are the linear membrane and bending strains, and Mep
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geometrically non-linear membrane strain. These strains are de"ned as
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where , x represents di!erentiation with respect to x.
In the absence of external forces, the equations of motion are derived by equating

the sum of the virtual work of the inertia forces and of the elastic restoring forces to
zero. Neglecting rotatory inertia*it can be neglected for most engineering
applications of thin plates [18]*and using the constitutive relations of the plate
[18] one obtains
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where o denotes the mass per unit volume and ) the area of the plate. [A] and [D]
are the membrane and #exural rigidity matrices given by
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where C(k)
ij

are the reduced sti!nesses of the kth layer, which can be obtained from
E
L
, E

T
, major and minor Young's moduli, from the Poisson ratios l

LT
and l

TL
and

from the shear modulus G
LT

[18]. The indices i and j assume the value 1, 2 and 6,
because the terms C(k)

ij
result from a simpli"cation of the generalized Hooke's law,

which is expressed by means of a (6]6) matrix. ¸ and ¹ denote the principal
directions of the orthotropic plate layer. o denotes the mass per unit volume and
) the area of the plate. Only symmetric laminated plates will be analyzed,
consequently, there is no coupling between in-plane stretching and transverse
bending.

Substituting equations (8) into equation (9), allowing the virtual generalized
displacements to be arbitrary, neglecting in-plane inertia and eliminating the
generalized in-plane co-ordinates Mq

p
N, results in the following equations of motion:
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where the non-linear sti!ness matrix, which is a quadratic function of the
generalized transverse displacements Mq
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N, is de"ned as
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[M
b
] is the bending inertia matrix; [K

1p
] and [K

1b
] are the in-plane and bending

linear sti!ness matrices; [K
2
] and [K

4
] are the non-linear sti!ness matrices. These

matrices are de"ned in references [4, 14]. The system of equations (11) constitutes
a system of coupled Du$ng equations.

2.2. HARMONIC BALANCE METHOD

Experimental, analytical and numerical investigations demonstrate that periodic
motions are the most likely to occur in plates vibrating freely with amplitudes of the
order of their thickness [14]. In this paper, undamped periodic motions will be
analyzed and, consequently, the transverse generalized displacement may be
expressed as
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Inserting equations (13) into the equations of motion (11) and implementing the
HBM, the equations of motion in the frequency domain are derived. These are of
the form

MF(MwN, u2 )N"(!u2[M]#[KL]#[KNL(MwN)] )MwN"M0N, (14)

where [M] represents the mass matrix, [KL] the linear sti!ness matrix and
[KNL(MwN)] the non-linear sti!ness matrix, which depends quadratically on the
generalized displacements MwN. The total number of degrees of freedom of the
model is n"kp2

o
, where k is the number of terms considered in equation (13). All

integrals involved in calculating the inertia and sti!ness matrices were evaluated
using symbolic computation [19].

One, two and three harmonics will be used in the numerical applications and the
equations of motion are derived for the last, more general, case. When k"3 in
equation (13), the vector of transverse generalized displacements is given by
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Substituting expressions (15) into the equations of motion (14) and neglecting
harmonics higher than 5ut, the following equations of motion are obtained:
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where, comparing with equation (14), the "rst matrix is the mass matrix [M] and
the second is the linear sti!ness matrix [KL]. The new vector of generalized
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displacements, MwN, does not depend on time and is de"ned as
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The cubic non-linear terms*MF
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The non-linear sti!ness matrix, [KNL], is
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3. THE CONTINUATION METHOD

3.1. PREDICTOR}CORRECTOR PROCEDURE

The equations of motion (14) are solved by a continuation method [20, 21],
which is composed of two main loops. In the external loop a prediction to the
solution is de"ned using the two last determined points of the backbone curve
(curve that relates the frequency with the amplitude of vibration)*(MwN

i
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). The prediction of MwN
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is thus obtained in the following way:
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where dwaux is the amplitude of the "rst increment vector, DMwN
i`1

and Dw is the
amplitude of the vector (MwN

i
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). The subscript i represents iterations of the

external loop, and the di!erent points of the curve; the subscript previous represents
a former solution of the internal loop, which is discarded. A prediction for
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must also be calculated. This results from the equation
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where s and MdwN
1
will be de"ned later. The sign of Du2

0
is the same as the one of the

previous increment, unless the determinant of the Jacobian of MFN has changed sign,
in which case a sign reversal is applied. The Jacobian of MFN, [J], is de"ned by

[J]"LMFN/LMwN. (26)
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The correction of the approximated solution is carried out in an internal loop.
Applying Newton's method to equation (14) and considering also variations in the
frequency of vibration, one obtains

[J]MdwN![M]MwN
i`1

du2"!MFN. (27)

Because the frequency of vibration is unknown, another equation is needed. This
is obtained by constraining the distance between the two successive points of the
curve, the arc-length s, to a "xed value, by the following constraint equation:
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Then the corrected value of MwN is
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Substituting DMwN
i`1

into constraint equation (28) gives the relation for du2. The
corrected value of the natural frequency is given by
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The iterations are repeated until the following inequalities:
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are satis"ed (D D represents the absolute value and E E the Euclidean norm,
although other norms can be used). e

1
, e

2
and e

3
assume values between 10~3 and

10~6.

3.2. BIFURCATION POINTS AND BRANCH SWITCHING

An element (MwN
0
, u2

0
) of a branch of solutions of MF (MwN, u2)N"M0N is called an

exceptional point*bifurcation or turning point*if the Jacobian of MFN with
respect to MwN is singular [21]. In order to detect exceptional points, the sign of the
determinant of [J] is studied for each new point of the backbone curve. If the signs
of DJ D of two successive points of the backbone curve are di!erent, then there exists
a particular point between those two points for which DJ D"0 and the matrix [J] is
singular. From bifurcation points, secondary branches are born.
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In order to describe secondary branches, a point close to the bifurcation point is
used to calculate the Jacobian matrix and the eigenvalue problem

([J]!k[I])M/N"M0N (33)

is solved. The eigenvector(s) M/N
j

associated with the zero eigenvalue(s) k
j
"0

indicate the direction(s) to be followed. The perturbed con"guration, MwN
j
, that is

used as the starting vector for branch switching [20, 21], is obtained by adding the
scaled eigenvector to the solution vector MwN at the bifurcation point
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j
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j
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j
E
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where f
j

denotes a scaling factor whose value is de"ned by the user, in
a &&trial-and-error'' way, until convergence to a solution in the new branch is
achieved.

4. APPLICATIONS

4.1. INTRODUCTION

Two graphite/epoxy rectangular plates are analyzed. Their geometrical and
material properties are de"ned in Tables 1 and 2. Plate 1 is a specially orthotropic
laminated plate, which means that its bending and twisting sti!nesses are
uncoupled. Also, as in symmetric laminates, the in-plane and bending sti!nesses are
uncoupled [18]. Plate 2 is a symmetrically laminated plate. In order to analyze the
TABLE 2
Material properties of the plates

Plate E
L

(GN/m2) E
G

(GN/m2) G
LT

(GN/m2) l
LT

o (Kg/m3)

1 173)0 7)2 3)76 0)29 1540
2 173)0 E

L
/15)4 0)79 E

G
0)3 1540

TABLE 1
Geometric properties of the plates

Plate Number of layers Orientation of principal axes a (mm) b (mm) h (mm)

1 16 (45, !45, 0, !45, 45, !45, 0,
45)

4:.
300 150 2)72

2 5 (h, !h, h, !h, h) 300 300 1
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in#uence of the "bres orientation, two di!erent values will be considered for the
angle that de"nes the orientation of the "bres with respect to the x-axis in Plate 2:
h"15 and 453. The plate's linear mode shapes and natural frequencies are shown
in Figures 2}4.

In order to demonstrate that an accurate model can be constructed with a small
number of degrees of freedom, the convergence with the number of harmonics and
with the number of shape functions is discussed in Sections 4.2 and 4.3. Plates 1 and
2 with h"453, referred to as Plate 2, are analyzed in these sections. Subsequently,
in Section 4.4, internal resonances are detected and the e!ect they have on the
dynamic behaviour of the plates is described. Finally, the in#uence of the "bre
orientation is discussed.

4.2. CONVERGENCE WITH THE NUMBER OF HARMONICS

Figures 5 and 6 present the backbone curves of Plates 1 and 2 calculated with
a di!erent number of harmonics. w

m
represents the maximum amplitude of

vibration displacement attained during the cycle at the points (m, g) indicated and is
given by

w
m
"xN

w
y

2k~1
+

i/1,3

Mw
i
N, (35)

wehere k represents the number of harmonics. Two harmonics give accurate results
and will be used in the models of both plates.
Figure 2. Linear mode shapes and natural frequencies of Plate 1. p
o
"10.



Figure 3. Linear mode shapes and natural frequencies of Plate 2, h"453, p
o
"8.

Figure 4. Linear mode shapes and natural frequencies of Plate 2, h"153, p
o
"8.
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Figure 5. Total displacement calculated with: (!) one harmonic, ()) two harmonics, (#) three
harmonics. Plate 1. (a) (m, g)"(0, 0). (b) (m, g)"(0)5, 0)5).

Figure 6. Total displacement calculated with: (!) one harmonic, ()) two harmonics, (#) three
harmonics. Plate 2. (a) (m, g)"(0, 0). (b) (m, g)"(0)5, 05).
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4.3. CONVERGENCE WITH THE NUMBER OF SHAPE FUNCTIONS

4.3.1. Out-of-plane shape functions
Table 3 shows that an HFEM model with "ve out-of-plane shape functions (25

d.o.f.) correctly approximates the "rst "ve natural linear frequencies of Plate 1.
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Figure 7 demonstrates that the backbone curve of the "rst harmonic of Plate 1 is
well approximated with p

0
"5. The third harmonic requires six out-of-plane shape

functions, although "ve give a very reasonable approximation. =
1

and
=

3
represent, respectively, the amplitudes of the "rst and third harmonics at the

points (m, g) indicated in the "gures and are given by

=
1
"xN

w
yMw

1
N, (36)

=
3
"xN

w
yMw

3
N. (37)

Table 4 demonstrates that a model constructed with "ve out-of-plane shape
functions (25 d.o.f.) correctly approximates the "rst eight linear natural frequencies
of Plate 2. Table 5 compares the HFEM results with results from reference [22] and
Figure 7. Plate 1. Amplitudes calculated at point (m, g)"(0, 0) with p
i
"6 and: ()) p

o
"5, (!)

p
o
"6, (#) p

o
"7.

TABLE 3
¸inear natural frequencies (rad/s) of Plate 1

p
o

5 6 7 10

d.o.f. 25 36 49 100

u
1

4941)817 4941)817 4941)533 4941)484
u

2
7302)876 7300)268 7300)230 7299)848

u
3

10904)63 10904)63 10894)69 10894)44
u

4
12223)93 12220)70 12219)51 12219)32

u
5

14994)59 14979)04 14979)04 14977)37



TABLE 4
¸inear natural frequencies (rad/s) of Plate 2

p
o

5 6 7 8

d.o.f. 25 36 49 64

u
1

763)159 763)101 763)097 763)096
u

2
1420)46 1419)97 1419)93 1419)93

u
3

1648)23 1647)45 1647)38 1647)36
u

4
2220)85 2220)10 2219)17 2219)13

u
5

2657)12 2654)92 2650)82 2650)65
u

6
2872)60 2869)40 2865)34 2865)10

u
7

3210)34 3198)62 3194)66 3193)69
u

8
3793)95 3730)63 3721)23 3715)73

TABLE 5
¸inear natural frequency parameter of Plate 2, h"453, j"(ohu2a4/D

0
),

D
0
"(E

L
h3 )/(12(1!l

LT
l
TL

) )

Mode 1 2 3 4 5 6 7 8

HFEM p
o
"8 22)38 41)65 48)32 65)09 77)74 84)03 93)67 109)0

64 d.o.f.
HFEM p

o
"6 22)28 41)65 48)32 65)11 77)87 84)16 93)81 109)4

36 d.o.f.
Rayleigh}Ritz [22] 22)40 41)64 48)32 65)09 77)76 84)06 93)58 109)0

50 terms
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a good agreement is found. Figure 8 shows the backbone curves of the "rst and
third harmonics of Plate 2 calculated with di!erent numbers of out-of-plane shape
functions. With p

o
"5 a good approximation is obtained.

4.3.2. In-plane shape functions

Figure 9 shows that six in-plane shape functions are enough to approximate the
"rst harmonic of Plate 1 and that the third harmonic requires eight in-plane shape
functions.

The "rst harmonic of Plate 2, is accurately calculated with seven in-plane shape
functions and the third harmonic requires, for the frequency regions considered,
eight in-plane shape functions: Figure 10. Figures 9 and 10 demonstrate that the
number of in-plane shape functions necessary increases with the amplitude of vibration.

4.4. MODAL COUPLING

4.4.1. Plate 1
In this section Plate 1 is analyzed using a model with p

o
"6, p

i
"10 and two

harmonics (72 d.o.f.). In Figures 11 and 12 the branch diagrams of Plate 1 are



Figure 8. Plate 2. Amplitudes calculated at point (m, g)"(0, 0) with p
i
"10 and: (!) p

o
"5 ())

p
o
"6, (#) p

o
"7.

Figure 9. Plate 1. Amplitudes calculated at point (m, g)"(0, 0) with p
o
"6 and: (!) p

i
"6, ())

p
i
"7, (#) p

i
"8, (L) p

i
"10.
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shown. There are two main branches, each of them with one bifurcation point.
From these points originates a secondary branch that connects the main branches.

The "rst main branch begins at the "rst linear mode and is de"ned mainly by the
"rst harmonic. Figures 13(a, b) show sections of the mode shapes of the "rst and



Figure 10. Plate 2. Amplitudes at point (m, g)"(0, 0) calculated with p
o
"5 and: (#) p

i
"7, (L)

p
i
"8, (!) p

i
"10.

Figure 11. Branch diagrams of Plate 1. Amplitudes calculated at (m, g)"(0, 0).
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third harmonics in this branch. Figure 13(c) represents the normalized shape of the
plate at t"2nm¹, where m is an integer and ¹ represents the period of vibration.
The "rst harmonic's mode shape changes with amplitude, but remains similar to
the "rst linear mode shape. The second harmonic's mode shape changes more with
the amplitude, but its e!ect is very small and the plate vibrates essentially in its "rst
mode.



Figure 12. Branch diagrams of Plate 1. Amplitude calculated at (m, g)"(0)5, 0)5).

Figure 13. Sections of modes of Plate 1 at y"0, "rst main branch at points (!)u/u
l1
"1)0004,

(L) u/u
l1
"1)1883, (---) u/u

l1
"1)3818. (a) First harmonic. (b) Third harmonic. (c) Both harmonics.
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The "rst and "fth linear natural frequencies are related by u
l5

/u
l1
"3)03.

Therefore, when the "rst non-linear resonance frequency, u
nl1

, increases due to the
increase of the sti!ness with the amplitude, a 1 : 3 internal resonance occurs and
results in a birfurcation point and in a secondary branch. This secondary branch
"nishes at a second bifurcation point in a second main branch. Moving along the
secondary branch, from the bifurcation point of the "rst main branch to the
bifurcation point on the second main branch, the importance of the "rst harmonic
decreases and the importance of the second harmonic increases.

In the secondary branch, the non-linear modes of the "rst and third harmonics
have the aspect shown in Figure 14, which is similar, but di!erent, to the one of the



Figure 14. Mode shapes of the "rst (a) and third (b) harmonics, at point u/u
l1
"1)0179 of the

secondary branch. Plate 1.
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"rst and "fth linear modes. In this branch, the plate's mode shape changes
considerably during the period of vibration, because it is described by the sum of
the "rst and "fth modes vibrating at di!erent frequencies. An example of this
variation is shown in Figure 15. The plots were made at increments of ¹/24, and are
shown for half a cycle. In the other half of the cycle the plots are symmetric to the
ones presented with relation to the plane x}y.

The second main branch is de"ned by the "fth mode of vibration and the third
harmonic.

4.4.2. Plate 2

Plate 2 with h"453 is analyzed by using a model with p
o
"5, p

i
"6 and two

harmonics (50 d.o.f.). In this plate, the importance of the third harmonic increases
signi"cantly with the amplitude of vibration, but does not result in a secondary
branch: Figure 16.

Figure 17 shows the modes of the "rst and third harmonics for a particular point
of the backbone curve. The "rst harmonic, Figure 17(a), vibrates in mode 1, the
third, Figure 17(b), in mode 6. The linear natural frequencies of these modes are
related by u

l6
/u

l1
"3)75. Due to the hardening spring e!ect u

nl1
'u

l1
and a 1 : 3

internal resonance occurs. Consequently, modes 1 and 6 couple and the third
harmonic is increasingly excited. An example of the vibration of the plate in the
time domain is shown in Figure 18, where the plots represent the plate at instants in
time di!ering by ¹/24.

Figures 19 and 20 represent sections of the mode shapes associated with the "rst
and third harmonics, at y"0 and for di!erent frequencies of vibration, that is at
di!erent vibration amplitudes. The mode shapes of each harmonic vary with



Figure 15. Vibration of Plate 1 during half a cycle, at point u/u
l1
"1)0179 of the secondary

branch.

MULTI-MODAL NON-LINEAR VIBRATION OF PLATES 145
amplitude, but remain similar to the "rst and sixth modes. Figure 21 shows
a section of the plate, which is de"ned by both the "rst and third harmonics. The
total shape of the plate varies with the amplitude because the mode shapes of each
harmonic vary and, more signi"cantly, because the relative weight of each
harmonic also changes with amplitude.

Because the internal resonance is of the type 1 : 3, the two and three harmonics
approximations give the same results as shown in Figure 6.

Tables 6 and 7 show that modes 1}7 of Plate 2, h"153, are well approximated
with six out-of-plane shape functions (36 d.o.f.). A model with six out-of-plane
shape functions, 10 in-plane shape functions and two harmonics, i.e. 72 d.o.f. will be
used in the analyses of this plate.

The "rst mode and "rst linear frequency of Plate 2 only vary slightly with the
orientation of the "bres. However, higher order modes have quite di!erent natural
frequencies and mode shapes: Figures 3 and 4.



Figure 16. Backbone curves of Plate 2. (a) (m, g)"(0, 0). (b) (g, m)"(0)5, 0)5).

Figure 17. Mode shapes of the "rst (a) and third (b) harmonics, at point u/u
l1
"1)3868. Plate 2.
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Figure 22 compares the "rst harmonic's backbone curve of Plate 2 when h"453
and when h"153. The slope of the curves is di!erent, showing that the sti!ness of
Plate 2 increases more with amplitude if h"153 than if h"453.

Whilst with h"453 the third harmonic amplitude increases initially and
afterwards decreases signi"cantly, due to the internal resonance, and becomes
negative, with h"153 it increases slowly and uniformly, without becoming so
important*Figure 23.



Figure 18. Vibration of Plate 2 during half a cycle, at point u/u
l1
"1)3868.
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5. CONCLUSION

The geometrically non-linear periodic free vibration of laminated composite
plates was studied using the hierarchical "nite-element and harmonic-balance
methods.

The convergence with the number of shape functions and with the number of
harmonics was analyzed and it was demonstrated that an accurate model is
obtained with a reduced number of d.o.f.

Internal resonances were detected and their consequences discussed. In what
concerns the backbone curve, they result either in a secondary branch or in an
increase of the curvature of the main branch. Because of the modal coupling of
modes vibrating at di!erent frequencies, internal resonances also result in a very
signi"cant variation of the mode shape during the period of vibration.

Another cause of the mode shape's variation is the modi"cation of the sti!ness of
the plate with the vibration amplitude. In this case, the non-linear mode shape
varies smoothly and maintains a close resemblance to the linear mode shape.



Figure 19. Sections of modes of "rst harmonic of Plate 2 at points (!) u/u
l1
"1)0006, (L)

u/u
l1
"1)1306. (--) u/u

l1
"1.3868. y"0.

Figure 20. Sections of modes of third harmonic of Plate 2 at points (!) u/u
l1
"1)0006, (L)

u/u
l1
"1)1306, (--) u/u

l1
"1)3868. y"0.
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Figure 21. Sections of shape of vibration (both harmonics) of Plate 2 at y"0, points (!)
u/u

l1
"1)0006, (L) u/u

l1
"1)1306, (--) u/u

l1
"1)3868.

TABLE 6
Convergence of linear natural frequencies (rad/s) of Plate 2, h"15, with the

number of out-of-plane shape functions

p
o

d.o.f. u
1

u
2

u
3

u
4

u
5

u
6

u
7

6 36 799)652 1073)32 1562)72 2058)84 2263)52 2318)30 2775)89
8 64 799)650 1073)30 1561)23 2058)71 2253)53 2317)71 2773)88

TABLE 7
¸inear natural frequency parameter of Plate 2, h"153. j"(ohu2a4/D

0
),

D
0
"(E

L
h3 )/(12(1!l

LT
l
TL

) )

Mode 1 2 3 4 5 6 7

HFEM p
o
"6 23)45 31)48 45)83 60)38 66)39 67)99 81)41

36 d.o.f.
Rayleigh}Ritz 23)46 31)48 45)86 60)38 66)47 67)96 81)36
[22] 50 terms
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Figure 22. Amplitude of Plate 2's "rst harmonics: ()) h"153; (**) h"453. (m, g)"(0, 0).

Figure 23. Amplitude of Plate 2's third harmonic: ()) h"153, (!) h"453. (m, g)"(0, 0).
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The consequences of changing the "bres orientation of laminated plates were
analyzed. The "rst linear mode and "rst linear frequency did not change much with
that orientation, however, higher order linear modes changed signi"cantly and
occurred at very di!erent frequencies. The slope of the backbone curves varies with
the orientation of the "bres, because of di!erent variation of the sti!ness with
amplitude and because modal coupling occurs with di!erent modes and at di!erent
vibration amplitudes. Thus one way of avoiding internal resonance for
a determined vibration amplitude, or vibration frequency, is to change the "bre
orientation of the laminated plates.
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